Extracellular chloride modulates the desensitization kinetics of acid‐sensing ion channel 1a (ASIC1a)
نویسندگان
چکیده
منابع مشابه
Extracellular chloride modulates the desensitization kinetics of acid-sensing ion channel 1a (ASIC1a).
Acid-sensing ion channels (ASICs) are sodium channels gated by extracellular protons. The recent crystallization of ASIC1a identified potential binding sites for Cl(-) in the extracellular domain that are highly conserved between ASIC isoforms. However, the significance of Cl(-) binding is unknown. We investigated the effect of Cl(-) substitution on heterologously expressed ASIC1a current and H...
متن کاملActivation of acid-sensing ion channel 1a (ASIC1a) by surface trafficking.
Acid-sensing ion channels (ASICs) are voltage-independent Na(+) channels activated by extracellular protons. ASIC1a is expressed in neurons in mammalian brain and is implicated in long term potentiation of synaptic transmission that contributes to learning and memory. In ischemic brain injury, however, activation of this Ca(2+)-permeable channel plays a critical role in acidosis-mediated, gluta...
متن کاملDynorphin opioid peptides enhance acid-sensing ion channel 1a activity and acidosis-induced neuronal death.
Acid-sensing ion channel 1a (ASIC1a) promotes neuronal damage during pathological acidosis. ASIC1a undergoes a process called steady-state desensitization in which incremental pH reductions desensitize the channel and prevent activation when the threshold for acid-dependent activation is reached. We find that dynorphin A and big dynorphin limit steady-state desensitization of ASIC1a and acid-ac...
متن کاملA Conformation Change in the Extracellular Domain that Accompanies Desensitization of Acid - sensing Ion Channel
Acid-sensing ion channels (ASICs) are thought to trigger some forms of acid-induced pain and taste, and to contribute to stroke-induced neural damage. After activation by low extracellular pH, different ASICs undergo desensitization on time scales from 0.1 to 10 s. Consistent with a substantial conformation change, desensitization slows dramatically when temperature drops (Askwith, C.C., C.J. B...
متن کاملAcid-sensing ion channel 1a regulates the survival of nucleus pulposus cells in the acidic environment of degenerated intervertebral discs
Objective(s): Activation of acid-sensing ion channel 1a (ASIC1a) is responsible for tissue injury caused by acidosis in nervous systems. But its physiological and pathological roles in nucleus pulposus cells (NPCs) are unclear. The aim of this study is to investigate whether ASIC1a regulates the survival of NPCs in the acidic environment of degenerated discs. Materials and Methods: NPCs were i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The FASEB Journal
سال: 2010
ISSN: 0892-6638,1530-6860
DOI: 10.1096/fasebj.24.1_supplement.813.19